If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+15x-800=0
a = 1; b = 15; c = -800;
Δ = b2-4ac
Δ = 152-4·1·(-800)
Δ = 3425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3425}=\sqrt{25*137}=\sqrt{25}*\sqrt{137}=5\sqrt{137}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5\sqrt{137}}{2*1}=\frac{-15-5\sqrt{137}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5\sqrt{137}}{2*1}=\frac{-15+5\sqrt{137}}{2} $
| 4(7x+2)=79 | | x^2-48x-324=0 | | 1.8x+(2x+12)+x=180 | | 4(7x+4)=92 | | 8x+2=4×+10 | | 60+4x+10+6x-15=180 | | 3X/2-x=x/3+5 | | 10x+2=7+14 | | 5x-15+75-x-180=0 | | 2(x-8)=4(x-3) | | 43x+23=43x+23 | | x-2x+8÷3=1÷4(x-2x-x)=-3 | | 1=8+6x | | 4c+6=37 | | 10x+3=x-7 | | 3^x^2-2x=27 | | -5-12=2z+15 | | (3x-10)+(5x-14)=180 | | 3x-10+5x-14-180=0 | | 7x-12+4x-17-180=0 | | n+4=n+7 | | 1/3y+2=5 | | 2-4y+3-6y=4 | | 6x+2x-7=0 | | x^2+50x-6000=0 | | 22y=242 | | 11x-26=52 | | −3x4=9 | | 0.5x^2+6x=0 | | 100^5x=0.1 | | (5x-23)+(7x-13)=180 | | 2x+(5x-9)=180 |